Sheiko Group People

Sheiko Group
Sheiko Group
Sheiko Group
Sheiko Group

Shape Shifting

Shape Shifting

Biological systems have the ability to program reversible shape changes in response to cues from their environment. While a variety of adaptive and stimuli-responsive materials like hydrogels, liquid crystalline elastomers, and shape memory materials have been developed, mimicking programmable behavior in a reversible way remains elusive.

Work published in Macromolecules by the Sheiko and Ashby groups, in collaboration with the University of Connecticut, Brookhaven and Oak Ridge National Labs, has shown that semi-crystalline elastomers may undergo reversible switching between well-defined shapes without applying any external forces. This behavior stems from the correlated interplay between a crystalline scaffold and a network of chemical crosslinks, each capable of encoding a distinct shape. The universal mechanism of reversible shapeshifting affords interesting opportunities for minimally invasive surgery, shape programmable biomedical implants, surgical sealants, and hands-free packaging.